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SUMMARY

Five benchmark programs were obtained and run on the NASA Lewis CRAY
X-MP/24. A comparison was made between the programs codes and between the
methods for calculating performance figures. Several multitasking jobs were
run to gain experience in how parallel performance is measured.

INTRODUCTION

During the past 5 yr, there has been an increased interest in bench-
marking supercomputer performance. New benchmarks have been written while
older benchmarks have been put in modern perspective. Even the National
Bureau of Standards has begun collecting Parallel Computer Benchmark Programs
as part of the effort of its Computer Measurement Research Facility (CMRF)
project. This collection, maintained by the Institute for Computer Services
and Technology at NBS, is open to supercomputer users so that they may borrow
from it and contribute to it.

Reports and articles written on a particular benchmark usually indicate
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machines of the same type (such as a CRAY X-MP/22) but with different operating
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Performance figures for the same benchmark program run on the same machine
at two or more locations can vary (due to running the program under different
operating conditions.) An example is given in (ref. 3). We thought it would
be interesting to collect a set of benchmarks and run them on the same machine
(our X-MP/24) to gain some appreciation for and understanding of why a
machine's performance figures can vary (sometimes greatly) depending on the
benchmark program.
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This report summarizes the results of our effort to:

. Collect a set of different benchmark programs and run them on our
CRAY X-MP/24 to gain experience in how performance data is collected and how
it can vary between benchmarks and between runs of the same benchmark.

« Set up a means for running these programs. Then when changes are
made to the operating system or hardware, they can be run to see what the
effects are on the performance data.

e Perform some initial experiments with multitasking to determine what
kind of performance measurement to loock for.

This benchmark collection contains in part specific routines which are
used in scientific/engineering computing and in part segments of code which
are a generic mix of calculations and instructions typical of scientific/
engineering computing. However, it does not represent a model of the specific
workload at NASA Lewis.

DESCRIPTION OF THE BENCHMARKS
Five benchmark programs were obtained.

The NAS Kernel Benchmark Program (ref. 1) Authors: Dave Bailey and John
Barton

The Argonne Programs (ref. 5) Author: Jack Dongarra

The Sandia Benchmark (SPEED) (ref. 2) Authors: T.H. Jefferson and
M.R. Scott

The Whetstone Benchmark (ref. 7) Authors: H.J. Curnow and B. A. Wichmann
The Livermore Loops Author: F.H. McMahon

We include here a brief description of each one.

The NAS Kernel Benchmark

This 1s one of the more recently written benchmarks. It was developed for
use of the NAS (National Aerodynamics Simulation) Projects Office at NASA Ames
Research Center. It consists of approximately 1000 1ines of FORTRAN code orga-
nized into seven tests, which are referred to as kernels. The calculations
performed typify the type of supercomputing done at Ames. Since it i1s a more
recent benchmark the seven kernels emphasize the vector performance of a com-
puter system. The seven kernels are:

(1) MXM - performs matrix product on two input matrices employing a
four-way unrolled outer product algorithm

(2) CFFT2D - performs a complex radix 2 Fast Fourier Transform on a two-
dimensional input array

(3) CHOLSKY - performs a Cholesky decomposition on a set of input matrices




(4) BTRIX - performs a block tridiagonal matrix solution along one dimen-
sion of a four-dimensional array

(5) GMTRY - sets up an array for a vortex method solution and performs
Gaussian elimination on the resulting array

(6) EMIT - creates new vortices according to certain boundary conditions

(7) VPENTA - simultaneously inverts three matrix pentadiagonals in a
manner conducive to vector processing

for a more detailed discussion, see references 1 and 4.
The Argonne Programs

LINPACK 1s a 1ibrary of FORTRAN linear algebra subroutines co-authored by
Jack Dongarra in 1979. Over the past several years he has been publishing
results of a benchmark program which solves systems of linear equations of
order 100 using routines from the LINPACK collection. The latest results are
given in Performance of Various Computers Using Standard Linear Equations Soft-
ware in a Fortran Environment (ref. 5).

We obtained from Argonne National Laboratory a tape consisting of nine
files each of which is a self contained benchmark. The following three were
selected to be included in our benchmark study.

(1) A_LINPACK system solver - A program and subroutines to measure timing
of the LINPACK routines for solving a dense system of equations.

(2) A better LU decomposition - A program consisting of a different
implementation of the solution of 1linear equations (ref. 9) using an algorithm
based on matrix-vector operations rather than just vector operations. As
reported in reference 5, it better reflects the true performance of a super-
computer than the LINPACK routines.

(3) A Vector Loop program - A program that indicates how well a compiler
vectorizes some standard loops. No timing results are included.

Two of the other files were double precision versions of (1) and (2)

Two others (one single precision and one double precision) contained only def-
initions and declarations that allowed you to insert your own LU decomposition.
The remaining one was a program to study indirect addressing in single preci-
sion.

The Sandia Benchmark (SPEED)
This is a program written at Sandia National Laboratory which consists of

five kernels taken from programs in use at Sandia in 1978. The five kernels
are:

(1) A linear equation solver with pivoting

(2) A routine which consists of part of the predictor step of an ordinary
differential equation solver

(3) routine consisting of a forward and backward substitution excerpt

A
from a 1inear equation solver with pivoting

4) A routine which consists of an excerpt from a Vortex Dynamics Code

5) A routine which consists of an excerpt from a lattice relaxation code




Although the first three were taken from software l1ibrary routines, the last
two were taken from large user codes at Sandia. Thus this benchmark typifies

the workload there.

The Whetstone Benchmark

This is a synthetic benchmark developed in the early 70's by Curnow and
Wichmann at U.K.'s National Physical Laboratory in Whetstone, England. It's
somewhat unique with respect to the above three in that it was developed to
match instruction frequency statistics of language usage (originally ALGOL)
collected from programs run at that laboratory. The resulting program is said
to represent the execution of one million Whetstone instructions. The inverse
of the measured run time indicates millions of Whetstone instructions per
second. Our copy is a FORTRAN version which was obtained from the Computer
Measurement Research Facility at the National Bureau of Standards.

The Livermore Loops

This program was developed at the Lawrence Livermore National Laboratory,
Livermore, Ca. by F.H. McMahon, and had its initial beginnings in the late
60's and early 70's. MWork was sponsored by the DOE. The version we obtained
consists of 24 kernels (or loops) each consisting of a relatively small extract
from a CPU - limited scientific application program. These computational
structures are considered to be the most important CPU time components from the
applications. They are:

Kernel Description

Hydro Fragment

Incomplete Cholesky Conjugate Gradient Excerpt
Inner Product

Banded Linear Equations

Tri-diagonal Elimination - Below Diagonal
General Linear Recurrence Relation
Equation of State Fragment

ADI Integration

Integer Predictors

Difference Predictors

First Sum

First Difference

2-Dimensional Particle in Cell
1-Dimensional Particle in Cell

Casual FORTRAN. Development Version
Monte Carlo Search Loop

Implicit, Conditional Computation
2-Dimensional Explicit Hydro Fragment
General Linear recurrence Equations
Discrete Ordinate Transport
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21 Matrix * Matrix product

22 Planckian distribution

23 2-Dimensional Implicit Hydro Fragment
24 Location of 1st minimum in array




Observations

The NAS kernels, the Argonne programs, the Sandia benchmark, and the
Livermore Loops produce timing information in MFLOPS (millions of floating
point operations per second) by dividing the number of floating point opera-
tions by the CPU time. However, the methods for counting the number of float-

ing point operations differ.

In the NAS Kernel Benchmark, the number of floating point operations for
each kernel is computed as follows. Each function operation (+, -, /, SQRT,
SIN, etc.) has a precise number of floating point operations (weight) associ-
ated with it. For example, the additions of two real counts as one floating
point operation while the division of real by a real counts as three. A com-
plete table showing the number of floating point operations for the various
functions is given in reference 1. The total number of floating point opera-
tions for each kernel is obtained by summing the products of the number of
occurances of each function operation and its weight.

Only the first two Argonne programs l1isted above give a MFLOP rate. 1In
the LINPACK system solver, the number of operations in computed using a well-
known formula which approximates the number of additions and multiplications
for solving a system of n equations in n unknowns. The formula is a function
of the order of the matrix. The third program chosen gives no timing informa-
tion since it only tests vectorization capability.

The Sandia Benchmark defines a floating point operation as an add, sub-
tract, multiply, or divide, with each operation counting equally.

In the Livermore Loops program, floating point operations are counted
according to the following weights:

+, "1*
/, SQRT
EXP, SIN, etc.

if (X rei. Y)

-0 i —

The sum of the products of the number of occurances of each of these oper-
ations and its weight gives the FLOPS. This weight association is different
from the one used in the NAS benchmark.

The Livermore Loops produces the most comprehensive set of statistics.
Also, unique to this benchmark is a harmonic mean among the kernel rates. It
can be argued that the harmonic mean (or more generally the weighted harmonic
mean) is more meaningful than the arithmetic mean (refs. 3 and 8).

BENCHMARK RESULTS

The five benchmark programs provided the following results on our CRAY
X-MP/24 running under COS 1.14 BF4. Each program was executed in dedicated
time, meaning that this was the only job executing in the system at the time.
A1l other jobs, including diagnostics, were suspended. These were runs made
without any changes to the program codes we received (Level 0 tests as defined
in (ref. 1)).




THE NAS KERNEL BENCHMARK

Program MFLOPS
MXM 136
CFFT2D 51
CHOLSKY 53
BTRIX 80
GMTRY 70
EMIT 82
VPENTA 1
Total 65

The total MFLOPS represents the ratio of the sum of the floating point
operations (FP OPS) for each kernel to the sum of the times for each kernel.

Program 1. LINPACK System Solver

THE ARGONNE PROGRAMS

MFLOPS

22 (system of order 100)

The routines SGEFA, SGFSL from LINPACK perform standard LU decomposition
This i1s a FORTRAN version with

with partial pivoting and back substitution.

simple statements a

Program 2. A Better LU Decomposition

nd simplie loops.

Array dimensions 301

Order 50

Order 200

Unrolled Depth

MFLOPS

]
2
4
8
16

17
22
25
21
26

Unrolled Depth

MFLOPS

Order 100

- DN~

53
70
81
94
96

Unrolled Depth

MFLOPS

Order 250

Unrolled Depth

MFLOPS

— N~

32
42
50
517
57

— s =

61
80
91
106
108




Order 150 Order 300

Unrolled Depth MFLOPS Unrolled Depth MFLOPS
1 44 1 68
2 58 2 88
4 68 4 99
8 18 8 115
16 19 16 117

The algorithm for this LU decomposition, whose description can be found in
reference 9, i1s based on matrix-vector operations rather than just vector oper-
ations. Notice that timings are given for matrices of six different orders
ranging from 50 to 300.

Program 3. Vector Loop Program.

The following table gives annotations of the types of loops (17 in all) and
whether or not they vectorized.

Loop Vectorized

Statements in wrong order

Dependency needing a temporary

Loop with unnecessary scalar store

Loop with ambiguous scatlar temporary

Loop with subscript that may seem ambiguous
Recursive loop that really isn't

Loop with possible ambiguity because of scalar store
Loop that is partially recursive

Loop with unnecessary array store

Loop with independent conditional

Loop with noninteger addressing
Simple loop with dependent condit?
Complex loop with dependent condit
Loop with singularity handling
Loop with simple gather/scatter subscripting

Loop with multiple dimension recursion

Loop with multiple dimension ambiguous subscripts
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THE SANDIA BENCHMARK (SPEED)

Kernel MFLOPS

23
1
39
10

8

O Wy -

Total 13




In reference 2, a modified version of this program is reported to give a
total of 36.8 MFLOPS, and an unmodified version is reported to show a total of

10 MFLOPS.
THE WHETSTONE BENCHMARK

The total CPU time for executing the program found by subtracting two calls
to the function SECOND was

Time (T) (1/7)
.04030 secs. 25 MWIPS

MWIPS = millions of Whetstone instructions per second.

THE LIVERMORE LOOPS

Mean Vector Length = 468

Kernel MFLOPS Span
1 152 1001
2 26 101
3 137 1001
4 44 1001
5 6 1001
6 13 64
7 17 995
8 113 100
9 145 101

10 65 101

1M 8 1001

12 n 1000

13 4 64

14 1 1001

15 5 101

16 3 75

17 9 101

18 12 100

19 1 101

20 12 1000

21 29 25

22 66 101

23 13 100

24 2 1001

MFLOPS Range = 2 to 171
Harmonic Mean 10
Median Rate =
Median Dev. =
Average Rate = 51
Standard Dev. = 55

26
40
5




The interesting and probably more meaningful indicator of overall
performance is the harmonic mean computed with equal weights attached, i.e.,
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where Ry = the MFLOPS of Kernel 1, i=1, ..., 24. Each kernel above was
assigned a weight of 1. As explained in references 3 and 8, the harmonic mean
is a more meaningful representation of the actual performance and measure of
the workload. This can be particularly true if there is a significant differ-
ence between the best and worst rate among all kernels or measured performances
in a benchmark.

In addition, two other sets of MFLOP rates are output in the same form as
above, one with a mean vector length of 89 and one with a mean vector length of
18. In each case, most of the spans or vector lengths were reduced. In case of
the MVL of 89, the spans of 1001, for example, were dropped to 101, while in
case of the MVL of 18, spans of 1007 were dropped to 27. A weight of 2 was
attached to each kernel in the MVL = 89 case, while a weight of 1 was attached
to each kernel in the MVL = 18 case. 1In general, for each particular kernel,
the MFLOP rate decreased if the span decreased. However, loops were repeated
enough times to keep the order of magnitude of the FLOPS about the same. 1In
some cases the MFLOP decrease was significant. For example, kernel 1 rates
were

Span MFLOPS

1001 152
101 114
27 64

Overall harmonic means did not vary much.

MVL MFLOPS (Harmonic Mean)
468 10

89 9

18 6.5




MULTITASKING RESULTS

This section reports on the results of two experiments. Experiment 1
involved running two copies of the same program, one on each of the two proces-
sors of our XMP/24 simultaneously. Experiment 2 jnvo]ved actually multitasking

one of the benchmarks.

EXPERIMENT 1

Bailey and Barton (ref. 1) suggested that it would be possible to get an
jdea of the amount of interprocessor resource contention which would occur when
a particular program was multitasked by executing that program simultaneously
on each of the individual processors. We did this for two of the benchmarks,
the NAS Kernel Benchmark and the Vector Loop Program from Argonne. No explicit
multitasking was done. The procedure was simply to suspend all jobs in the
system and execute two identical, independent copies of the benchmark simulta-
neously on two (2) processors. The results of these simultaneous runs are given
below, along with a single dedicated run for comparison.

NAS KERNEL BENCHMARK

Wall clock CPU MFLOPS
2 programs run 35.34 34.6813 62.64
simultaneously 35.36 34.6797 62.64
Single Run 33.84 33.4193 65.01

VECTOR LOOP PROGRAM

Total wall
Clock time

2 programs run 91.58
simultaneously 91.52

Single Run 90.80

Both the NAS kernels and Vector Loop programs were modified slightly by
inserting calls to the function TIMEF (which gives wall clock time). This was
done so that an approximate maximum speedup could be calculated.

The Vector Loop Program was further modified so that instead of every tenth
array element being printed out, as is done in the original benchmark, every
array element 1s printed out (the parameter PRTINC was changed from 10 to 1).
This was done in order to see what effect a large amount of I/0 would have on
interprocessor resource contention.

The speedup is calculated as suggested in the CRAY Multitasking Users
Guide:

execution time of uniprocessor run
speedup = execution time of multiprocessor run

10




where the uniprocessor run refers to the run of the original unmodified program
executing on one CPU in dedicated time, and the multiprocessor run represents
the run of the multitasked program executing on two CPU's in dedicated time.

In our example the execution time of the multiprocessor run is approximated
by taking the average of the wall clock times of the two simultaneous runs.
The execution time of the uniprocessor run is approximated by doubling the
wall clock time of the unmodified program run. The results are shown below:

NAS KERNEL BENCHMARK

3.84 x 2
35.35 ~

VECTOR LOOP PROGRAM

Speedup = 1.914

Speedup = ggg%ggé—g = 1.983

As Bailey pointed out, this is a relatively easy way of making some estimates
about multitasking. It is not true multitasking.

EXPERIMENT 2

In this effort, we decided to gain some experience with multitasking. To
save time from developing an algorithm and program ourselves, we looked for a
benchmark program from the collection that could be quickly and easily multi-
tasked. The Vector Loop Program was chosen for a number of reasons. First of
all, it has the largest execution time of any of the benchmarks (approximately
90 seconds). Second, the structure of the program is amenable to multitasking.
It is structured as one major loop which consists of 17 well defined, indepen-
dent minor loops. One execution of the major loop causes all 17 of the minor
loops to be executed once. Because these minor loops are independent, any
combination of them could be executed concurrently.

The first step in multitasking was to acquire more information about the
execution times of the various parts of the program and to determine the use
and scope of the data. Two utilities are available to give more information
about the execution time of various parts of the program. Flowtrace summarizes
the number of calls to subroutines and what portion of the program's time is
spent in those subroutines. SPY samples the program whiie it is executing and
reports on the number of times it found the program working in certain label
groupings as it samples. It can be used to identify frequently executed
portions of the program. Neither of these utilities provided the necessary
information for this particular program and therefore the TIMEF function was
inserted in the code at appropriate places in order to determine the time used
by each of the 17 individual loops.

Another utility, FTREF, was found to be extremely useful in analyzing the
use and scope of the data. Using this information, the program was split by
placing some of the minor loops in a subroutine and having the main program
call this subroutine as a task with a call to TSKSTART. The strategy for
determining the split of the two parts was twofold. First and foremost, we
want the time spent in the subroutine to be approximately equal to the time

1




spent in the main program (between the call to TSKSTART and TSKWAIT). If
possible, we would 1ike the subroutine to finish slightly ahead of the main
program because the overhead for executing a TSKWAIT is considerably less if
the program making the call to TSKWAIT (in our case the main program), doesn't
have to wait. The second thing that was considered when splitting the program
was memory contention. Even though the 17 loops were independent, some of them
were still accessing the same memory (shared, read only memory). We did not
want 2 parts trying to read the same piece of data at the same time. Keeping
this information in mind as well as the timing requirement, several different
versions were created and tested. The results for the most successful version
are given below. The time for a dedicated run of a single execution of the
original version of Vector Loop Program is given for comparison.

Total wall | Speedup of
clock time [ multitasked
version

Single Run 89.57
Multitasked Run 48.05 1.86

It must be kept in mind that this was a rather simplistic exercise 1in
multitasking. It was a relatively small piece of code which had few depend-
encies and which required very 1ittle synchronization. It did, however, allow
us to gain some experience in, and appreciation for, the intricacies of multi-
tasking.

FINAL REMARKS

It is difficult to draw conclusions from a comparison of these benchmarks.
Part of the reason is due to the inherent difficulties involved in performance
testing itself, as explained by Worlton (ref. 3) and reinforced by Bailey
(ref. 1). That is, sometimes runs are made with tuned versions of benchmarks
involving minor or major changes which exploit the best features of a compiler
or architecture. Sometimes compiler versions are not noted, or differences in
operating system conditions are not exposed.

We ran all of these benchmark programs as received. No changes were made.
An interesting and important point to make is the following. A1l five of them
are different, but parts of some of them do similar things. Suppose we observe
a single figure (rate) from each of the benchmarks and compare them, e.g.,

NAS Kernels Total MFLOPS 65
LINPACK System Solver 22
Sandia SPEED Total MFLOPS 13
Whetstone MWIPS 25
Livermore Loops Harmonic Mean|10

The Sandia SPEED program gives the lowest performance figure while the
NAS kernels program gives the highest figure. However, this comparison is not
even meaningful because as we explained in section 2, the meaning of MFLOPS
differs among all five due to the fact that each one counts floating point .
operations in a different way. Furthermore, one can increase these figures by
modifying (or tuning) the programs in various ways.

12




These benchmarks might be used in a relative sense to see how rates are
affected when changes are made to the compiler or operating system. Also, one
could choose a particular routine or a particular segment of code from this
benchmark collection and study its timing information. However, it's clear
that before making comparisons or trying to draw conclusions, one should
understand how rates (e.g. MFLOPS) are calculated, exactly what kind of
algorithms or calculations the code is doing, and whether or not the algorithms
and code are written to exploit the features of a compiler or architecture.
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